Buscar este blog

Magister en Nutrición Acuícola

Magister en Nutrición Acuícola
Universidad Austral de Chile-Sede Puerto Montt
Mostrando las entradas con la etiqueta Noticia. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Noticia. Mostrar todas las entradas

martes, 17 de octubre de 2017

Mantis shrimp brain contains memory and learning centers found only in insects

With exceptionally keen vision and the fastest strike in the animal kingdom, mantis shrimps are formidable predators of coral reefs around the world.
Taking a close look at the neural systems of mantis shrimp, top arthropod predators of the coral reef, researchers led by Nick Strausfeld at the University of Arizona and Gabriella Wolff, now at the University of Washington, discovered brain structures that -- according to textbook wisdom -- shouldn't be there.
Known as mushroom bodies, these structures, which play a key role in forming memories and learning, had only been found in insects -- until now. The findings appear to question the most commonly held scenario retracing how brain structures evolved in arthropods.
Since it has been universally accepted that insects evolved from crustaceans, and mushroom bodies are exclusive to insects (or so it seemed), most biologists agree that these unique brain structures evolved after the insect lineage split off from the crustacean lineage.
The implications of the study, which is published in the open-access journal eLIFE, point to one of two possible scenarios, both equally likely to stir up a buzz in the scientific community. According to Strausfeld, a Regents' Professor in UA's Department of Neuroscience and the senior author on the paper, one interpretation suggests that mushroom bodies are much more ancient than scientists realized and were lost in almost all crustaceans except mantis shrimp, a group known as stomatopods that are the sister group of crustaceans such as shrimp, lobster and crabs. In the other scenario, mushroom bodies evolved independently in stomatopods and are analogous to their counterparts in insects, through a process known as convergent evolution.
Comprising more than 4 million species, arthropods are the largest and most diverse group of animals, including crustaceans, insects and spiders. All arthropods are thought to descend from a common ancestor, most likely a creature that inhabited the ocean floor more than 550 million years ago. The exact branching of the arthropod family tree at that early time remains murky, a sketchy picture veiled by the layers of deep time and gaps in the fossil record.
By visualizing cells and neural connections in the brains of mantis shrimp, the authors of the study show that among crustaceans, only mantis shrimp possess true mushroom bodies. Intriguingly, though, they also found some attributes of these iconic structures in close relatives of the mantis shrimp: cleaner shrimp, pistol shrimp and land-living hermit crabs.
This may not be a coincidence, the authors suggest, arguing that among crustaceans, mantis shrimp and their relatives are the only known group that depends on memory of exact locations. It may therefore not be a coincidence that precisely those taxa have retained mushroom bodies because "one proposed driver of the evolution of large mushroom bodies is the requirement to recall the exact locations and properties of places from which to obtain food," as the authors write.
"In insects, mushroom bodies are necessary for learning and memory," Strausfeld says. "We showed earlier that in cockroaches they are necessary for memorizing place. This may be true of most insects. To find this structure in a crustacean is really exciting, because it suggests that it may have arisen in deep time: an ancient center, retained for over half a billion years, to perform this function."
Using a technique known as immunohistochemistry, Wolff and Strausfeld first prepared very thin sections of mantis shrimp brain tissue and applied antibodies that specifically detect certain proteins known to play important roles in learning and memory. Because these antibodies are coupled to fluorescent markers, researchers can trace the exact locations of these proteins as they outline the anatomical architecture of the nervous system.
"When we study the sections stained for learning and memory proteins under the microscope, the characteristic mushroom body lobes that typify insect mushroom bodies light up very intensively," Strausfeld says.
The team is confident that the structures it identified are indeed mushroom bodies. Whereas in the past just three neuroanatomical characters were routinely used to identify these hallmark structures in insect brains, the team expanded this suite of characters to 14 and, according to Strausfeld, "to our delight, as do insects, mantis shrimp reveal every one of them."
The study's authors acknowledge that while intriguing, their findings provide no definitive conclusion to exactly how and when mushroom bodies evolved. The hypothesis that identical centers of such stunning complexity have evolved convergently in stomatopods and insects is just as fascinating as the alternative -- that of mushroom bodies evolving early in the evolution of all arthropods. Strausfeld and his co-authors are not betting on one as more likely than the other.
"We can't rule out convergence," says Wolff, "because it is possible for complex structures to evolve multiple times, although it is not the most probable scenario."
As top predators that use their formidable vision to stalk and hunt prey over considerable distances, mantis shrimp have to evaluate and remember complex features of their environment, the authors note. Similarly, cleaner shrimp, pistol shrimp and land-living hermit crabs rely on advanced spatial and temporal memory skills not shared by other crustacean species, which may have lost their mushroom bodies over the course of evolution.
In previous studies, Wolff and Strausfeld discovered structures resembling mushroom bodies in taxa that evolved before crustaceans and insects, such as centipedes, spiders, even flatworms. Says Wolff: "I think it is most likely that these structures did exist in the last common ancestor of arthropods, and the species that don't have them have secondarily lost them."
The authors hope that studying mushroom body transcriptomes, the patterns of gene expression characterizing their participating neurons, will serve as the ultimate arbiter.
"The question we ultimately want to answer is: What was the earliest brain?" Strausfeld says. "Our research gives us an insight into an ancient brain structure. The earliest brain was not simply defined as the anterior end of the nervous system, but something more elaborate. Fossilized tracks made over 520 million years ago show us that even the earliest brains could make a decision of what to do next and where to return, and those decisions might very well have been informed not simply by immediate sensory information but also by recall."
Fuente: Science Daily
#REMAhaciaelfuturo 

lunes, 16 de octubre de 2017

Patógenos de Pescados y Mariscos e Información de Resistencia Antimicrobiana. Una Revisión

Tendencias mundiales en el consumo de mariscos

La mayoría de los pescados y mariscos son una buena fuente de proteínas, ácidos grasos omega-3 de cadena larga, vitamina D, selenio y yodo . El consumo de productos del mar tiene importantes beneficios para la salud, incluyendo el desarrollo neural, visual y cognitivo durante la gestación y la infancia y minimiza el riesgo de enfermedades cardiovasculares. La Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO) informó que el suministro mundial per cápita aumentó de 9,9 kg en 1960 a 14,4 Kg en 199019,7 Kg en 2013 y más de 20 kg en 2014 (FAO, 2016). El consumo de mariscos también ha aumentado por país; China per cápita ha aumentado de 14,4 Kg en 1993 a 37,9 en 2013. Otros países del Asia oriental per cápita también han aumentado de 10,8 Kg a 39,2 Kg en 2013. El promedio continental de África aumentó a 10 KgAmérica del Norte incluyendo EE.UU. a 21,4 KgEuropa a 22,2 Kg y Oceanía a 24,8 Kg (FAO, 2016). El consumo de productos pesqueros ha aumentado en los Estados Unidos durante las últimas décadas, con un consumo que creció en promedio de 3,5 Kg en 1980 a 5,6 Kg en 2006. En 2013 disminuyó a 4,9 Kg (USDA, 2015), que era aún más que la media de 1980. Teniendo en cuenta el crecimiento de la población y el aumento del consumo de pescado por habitante, el suministro bruto de pescados y mariscos de los Estados Unidos ha crecido más de 70% desde 1980, hasta los 2,2 millones de Kg en 2009. Las importaciones de productos pesqueros aumentaron significativamente desde el 50% del consumo bruto de alimentos marinos en 1980 a más del 91% en los años actuales para satisfacer el déficit de la producción nacional. Recientemente, casi el 50% de las importaciones de pescados y mariscos de Estados Unidos se producen por la acuicultura, y un 75% de importaciones brutas para los alimentos marinos congelados.
La pesca y la acuicultura proporcionaron una fuente de ingresos para aproximadamente 56,6 millones de personas en todo el mundo en 2014 ( FAO, 2016). Su participación es a tiempo parcial, pequeñas, intermedias o operaciones de producción a gran escala. Ochenta y cuatro por ciento de estas poblaciones son de Asia, 10% de África, 4% de América Latina y el Caribe y el 2% restante se distribuye en todo el mundo. O bien trabajan en la captura silvestre o la acuicultura. La FAO introdujo diferentes códigos para manejar tanto la captura silvestre como la acuicultura ( FAO, 2016 ).
Desde los años 50s, la resistencia a los antimicrobianos ha sido reconocida como un peligro para la salud pública en todo el mundo, que se ha transportado hasta el nuevo milenio ( CDC, 2010b ). Los antimicrobianos aprobados se usan para especies marinas como terapéuticos y profilácticos. Como la críanza en acuicultura es intensiva, todos los antimicrobianos son en masa. Los residuos de los antimicrobianos no utilizados precipitan y contaminan el ambiente acuático y ejercen un efecto perjudicial sobre la microbiota y las especies animales en el tiempo. El uso de antimicrobianos inseguros o no aprobados (por ejemplo, cloranfenicol, nitrofurano, etc.) pueden tener un efecto nocivo sobre la salud humana. Algunos antimicrobianos como los nitrofuranos y las fluroquinolonas pueden resultar en resistencia antimicrobiana, mientras que otros como el violeta de genciana y los nitrofuranos pueden ser cancerígenos( FDA, 2015 ). El uso excesivo y el uso indebido de antibióticos en la acuicultura pueden aumentar la prevalencia de resistencia a antibióticos, de patógenos zoonóticos en una población acuática.

jueves, 7 de abril de 2016

Investigadores descubren beneficios de extractos de hongo seta y la ortiga en el crecimiento y la respuesta inmune de la Trucha arcoiris hacia Aeromona hydrophila

 
Un grupo de investigadores de la Universidad de Kastamonu en Turquía publicaron en la revista Aquaculture el efecto de utilizar extractos del hongo seta (Pleurotus ostreatus, también conocido como seta costra, seta de concha, gírgola, etc) y de la ortiga (Urtica dioica) sobre la respuesta inmune y resistencia hacia Aeromona hydrophila en Trucha arcoiris (Oncorhynchus mykiss). Se evaluaron 3 concentraciones de extractos [0 (control), 0.1 y 0.5 g/kg-1 de alimento], los cuales se mezclaron con el alimento y se alimentaron truchas (10.28+/- 0.1g) por un periodo de 30 días.  Posterior a los 30 días, a las truchas se les inyectó vía intraperitoneal 100 ul de cepa de A. hydrophila (ATCC 20662) con lo cual iniciaba el desafio.  

viernes, 1 de abril de 2016

Uso de Spirulina como dieta de reemplazo mejora el desarrollo en juveniles de Tilapia del Nilo




En un estudio realizado por Investigadores de la Universidad Ateneo de Manila, encontraron que el remplazo harina de pescado con Spirulina (Arthrospira platensis) menor a un 75% en la dieta de juveniles de Tilapia del Nilo (Orechromis niloticus) incrementa su ganacia en peso y mejora la tasa de crecimiento específica y la tasa de eficiencia alimenticia. Además, la adición de Spirulina redujo el contenido de trigliceridos, mejorando así su estado de salud. 

Asimismo, los análisis estadísticos mostraron que el remplazo del 30% de proteína de Arthtospira en la dieta, fue el nivel optimo de inclusión en el cual los juveniles de Tilapia del Nilo mostraron el mejor rendimiento en crecimiento y eficiencia de utilización de alimento.


 
Fuente: 
J Appl Phycol (2016) 28:1023–1030. 
Dietary Spirulina (Arthrospira platensis) replacement enhances performance of juvenile Nile tilapia (Oreochromis niloticus)
Stephanie F. Velasquez & Merab A. Chan & Rhea G. Abisado & Rex Ferdinand M. Traifalgar & Melchor M. Tayamen & Gian Carlo F. Maliwat & Janice A. Ragaza

Abstract:

A feeding trial was conducted to evaluate the effects of Spirulina (Arthrospira platensis) inclusion in
experimental diets of juvenile Nile tilapia (Oreochromis niloticus). Iso-nitrogenous and iso-lipidic diets were prepared using a positive control diet (S0) and four basal diets with A. platensis at 30 % (S30), 45 % (S45), 60%(S60), and 75 % (S75) inclusion levels. Experimental diets were randomly assigned to tanks (13.35 kg m−3) with initial body weight of 0.89±0.02 g in triplicates. The results of the feeding trial demonstrated significantly improved (P < 0.05) growth performance and
hepatosomatic and viscerosomatic indices of fish fed S30. Blood chemical profile also indicated desirable values in fish fed A. platensis diets as compared to fish fed S0. On the contrary, fish fed S75 exhibited significantly reduced fish growth. Blood chemical analysis showed significant difference (P<0.05) in levels of plasma triglyceride. Results of the present work indicate that 30 % A. platensis inclusion is deemed the optimal level of dietary replacement for increased growth performance,
improved feed utilization efficiency, and enhanced overall health status of Nile tilapia juveniles.

#REMAhaciaelfuturo

  


jueves, 31 de marzo de 2016

Importante Industria de alimento para peces desarrolla dietas sin uso de harina de pescado

Skretting, líder mundial en tecnología de alimentos para la acuicultura, es la primera empresa en introducir en el mercado de alimento para salmón formulado totalmente libre de harina de pescado, ofreciendo el mismo rendimiento en términos de crecimiento y salud de los peces. Este avance, llamado MicroBalance FLX, ha sido posible luego de extensas investigaciones que están respaldadas por Skretting Aquaculture Research Centre (ARC).
 Todos los nuevos productos MicroBalance FLX pueden ser libres en cuanto a la inclusión de harina pescado, una innovación que trae consigo importantes beneficios y que permite a Skretting ser cada vez más flexible en cuanto al uso de materias primas y trabajar más responsablemente con los recursos disponibles de harina de pescado, mejorando las credenciales de sustentabilidad de la  producción global de salmón.